Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626679

RESUMEN

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Asunto(s)
Alcanfor , Alcanfor/análogos & derivados , Pez Cebra , Animales , Masculino , Femenino , Alcanfor/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Reproducción/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Compuestos de Bencidrilo/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
2.
Foods ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38472772

RESUMEN

Prunella vulgaris L. (PV) is a widely distributed plant species, known for its versatile applications in both traditional and contemporary medicine, as well as in functional food development. Despite its broad-spectrum antimicrobial utility, the specific mechanism of antibacterial action remains elusive. To fill this knowledge gap, the present study investigated the antibacterial properties of PV extracts against methicillin-resistant Staphylococcus aureus (MRSA) and assessed their mechanistic impact on bacterial cells and cellular functions. The aqueous extract of PV demonstrated greater anti-MRSA activity compared to the ethanolic and methanolic extracts. UPLC-ESI-MS/MS tentatively identified 28 phytochemical components in the aqueous extract of PV. Exposure to an aqueous extract at ½ MIC and MIC for 5 h resulted in a significant release of intracellular nucleic acid (up to 6-fold) and protein (up to 10-fold) into the extracellular environment. Additionally, this treatment caused a notable decline in the activity of several crucial enzymes, including a 41.51% reduction in alkaline phosphatase (AKP), a 45.71% decrease in adenosine triphosphatase (ATPase), and a 48.99% drop in superoxide dismutase (SOD). Furthermore, there was a decrease of 24.17% at ½ MIC and 27.17% at MIC in tricarboxylic acid (TCA) cycle activity and energy transfer. Collectively, these findings indicate that the anti-MRSA properties of PV may stem from its ability to disrupt membrane and cell wall integrity, interfere with enzymatic activity, and impede bacterial cell metabolism and the transmission of information and energy that is essential for bacterial growth, ultimately resulting in bacterial apoptosis. The diverse range of characteristics exhibited by PV positions it as a promising antimicrobial agent with broad applications for enhancing health and improving food safety and quality.

3.
Int Immunopharmacol ; 131: 111820, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508092

RESUMEN

Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 µmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.


Asunto(s)
Adenina , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Humanos , Peróxido de Hidrógeno , Riñón , Iridoides/farmacología , Apoptosis , Estrés Oxidativo , ARN , Metiltransferasas , Proteína Forkhead Box O1 , Proteínas Proto-Oncogénicas c-akt
4.
Toxics ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535947

RESUMEN

Phthalic acid esters (PAEs), commonly used as plasticizers, are pervasive in the environment, leading to widespread human exposure. The association between phthalate exposure and metabolic disorders has been increasingly recognized, yet the precise biological mechanisms are not well-defined. In this study, we explored the effects of monoethylhexyl phthalate (MEHP) and monocyclohexyl phthalate (MCHP) on glucose and lipid metabolism in human hepatocytes and adipocytes. In hepatocytes, MEHP and MCHP were observed to enhance lipid uptake and accumulation in a dose-responsive manner, along with upregulating genes involved in lipid biosynthesis. Transcriptomic analysis indicated a broader impact of MEHP on hepatic gene expression relative to MCHP, but MCHP particularly promoted the expression of the gluconeogenesis key enzymes G6PC and FBP1. In adipocytes, MEHP and MCHP both increased lipid droplet formation, mimicking the effects of the Peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi). Transcriptomic analysis revealed that MEHP predominantly altered fatty acid metabolism pathways in mature adipocytes (MA), whereas MCHP exhibited less impact. Metabolic perturbations from MEHP and MCHP demonstrate shared activation of the PPARs pathway in hepatocytes and adipocytes, but the cell-type discrepancy might be attributed to the differential expression of PPARγ. Our results indicate that MEHP and MCHP disrupt glucose and lipid homeostasis in human liver and adipose through mechanisms that involve the PPAR and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways, highlighting the nuanced cellular responses to these environmental contaminants.

5.
Sci Total Environ ; 921: 171109, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387563

RESUMEN

Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 µm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.


Asunto(s)
Enfermedades de la Retina , Contaminantes Químicos del Agua , Humanos , Cuerpo Vítreo/química , Microplásticos , Plásticos/análisis , Cromatografía de Gases y Espectrometría de Masas , Contaminantes Químicos del Agua/análisis
6.
Environ Int ; 184: 108480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341879

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Asunto(s)
Dicloruros de Etileno , Melatonina , Testículo , Masculino , Ratones , Animales , Piroptosis , Melatonina/farmacología , Melatonina/metabolismo , ARN de Interacción con Piwi , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/farmacología
7.
Environ Health Perspect ; 132(2): 27011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381479

RESUMEN

BACKGROUND: Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES: This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS: We assessed the impact of polystyrene nanospheres (PNSs; 50 nm, 1.0mg/L) on HMS-induced MCF-7 cell proliferation (HMS: 0.01-1µM, equivalent to 2.62-262µg/L) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262-262µg/L) with or without PNSs (50 nm, 1.0mg/L) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS: Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17ß-estradiol (E2) release in females. Conversely, males showed lower testosterone, E2, and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION: PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.


Asunto(s)
Nanosferas , Adulto , Femenino , Humanos , Masculino , Animales , Pez Cebra , Células MCF-7 , Poliestirenos/toxicidad , Estrógenos , Glucocorticoides , Esteroides
8.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215666

RESUMEN

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Asunto(s)
Lantano , Osteopontina , Humanos , Osteopontina/metabolismo , Lantano/toxicidad , Lantano/metabolismo , Riñón , Túbulos Renales/metabolismo , Biomarcadores/metabolismo
9.
Food Res Int ; 177: 113900, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225143

RESUMEN

This work aims to explore an available avenue to design an equilibrium modified atmosphere packaging (EMAP) by the modification of gas permeability of material. In this work, the introduction of available active sites endowed materials with adjustable gas permeability properties. With varying concentrations of the resulting materials with various gas permeability, the CO2 and O2 gas permeability of the blending films were modified at the range of 3.92 âˆ¼ 17.84 barrier and 0.65 âˆ¼ 3.46 barrier, respectively. On this basis, the films were used as EMAP to preserve postharvest cabbages. The results indicated that each EMAP achieved an equilibrium atmosphere containing 6.8 % ∼ 3.8 % CO2 and 2.1 % ∼ 5.2 % O2 within 15 h and maintained it continuously. In these atmosphere, the respiratory rate of the preserved cabbages was significantly inhibited, thereby delaying the deterioration of their storage quality. As the results, sensory scores of the preserved samples were maximally maintained. Declines of color indexes and texture indexes were obviously inhibited. Chemical variations in chlorophyll content, total phenolics content, total flavonoids content, ascorbic acid and nitrite content were significantly suppressed. The overall findings revealed that this method is suitable and promising to develop EMAP for the postharvest vegetables.


Asunto(s)
Brassica , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Dióxido de Carbono , Oxígeno/química , Dominio Catalítico , Atmósfera
10.
Food Chem Toxicol ; 182: 114158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940031

RESUMEN

Geniposide (GP) is the homology of medicine and food with bioactive effects of antioxidation and resistance to apoptosis in the liver. It's of great significance to explore the biosafety exposure limits and action mechanisms of GP. This study detected the global DNA methylation microenvironment and the regulation of specific genes in GP against cellular apoptosis induced by hydrogen peroxide (H2O2) of human hepatocyte L-02 cells. The half inhibitory concentration (IC50) of GP on normal L-02 cells was 57.7 mg/mL. GP exerted new epigenetic activity, increased DNMT1, decreased TET1 and TET2 expression, and reversed the demethylation effect to some extent, thereby increasing the overall genomic DNA methylation level at the concentration of 900 µg/mL. GP pretreatment could also adjust the level of P53, Bcl-2 and AKT altered by H2O2, reducing their specific DNA methylation levels in the promoter regions of AKT and Bcl-2 to inhibit apoptosis. Taken together, GP regulates the global DNA methylation level and controls the expression changes of P53, Bcl-2 and AKT, jointly inhibiting the occurrence of apoptosis in human hepatocytes and providing the newly theoretical references for its safety evaluation.


Asunto(s)
Metilación de ADN , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Hepatocitos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/farmacología , Proteínas Proto-Oncogénicas/genética
11.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993864

RESUMEN

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Asunto(s)
Melatonina , Neuroblastoma , Humanos , Ratones , Animales , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Poliestirenos/metabolismo , Microplásticos , Neuronas Dopaminérgicas/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Simulación del Acoplamiento Molecular , Plásticos , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
12.
Adv Sci (Weinh) ; 10(36): e2303753, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37991139

RESUMEN

The increased use of low-dose computed tomography screening has led to more frequent detection of early stage lung tumors, including minimally invasive adenocarcinoma (MIA). To unravel the intricacies of tumor cells and the immune microenvironment in MIA, this study performs a comprehensive single-cell transcriptomic analysis and profiles the transcriptomes of 156,447 cells from fresh paired MIA and invasive adenocarcinoma (IA) tumor samples, peripheral blood mononuclear cells, and adjacent normal tissue samples from three patients with synchronous multiple primary lung adenocarcinoma. This study highlights a connection and heterogeneity between the tumor ecosystem of MIA and IA. MIA tumor cells exhibited high expression of aquaporin-1 and angiotensin II receptor type 2 and a basal-like molecular character. Furthermore, it identifies that cathepsin B+ tumor-associated macrophages may over-activate CD8+ T cells in MIA, leading to an enrichment of granzyme K+ senescent CD8+ T cells, indicating the possibility of malignant progression behind the indolent appearance of MIA. These findings are further validated in 34 MIA and 35 IA samples by multiplexed immunofluorescence. These findings provide valuable insights into the mechanisms that maintain the indolent nature and prompt tumor progression of MIA and can be used to develop more effective therapeutic targets and strategies for MIA patients.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfocitos T CD8-positivos , Ecosistema , Leucocitos Mononucleares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/genética , Pulmón/patología , Perfilación de la Expresión Génica , Microambiente Tumoral/genética
13.
Toxins (Basel) ; 15(11)2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999509

RESUMEN

Aflatoxins are liver carcinogens and are common contaminants in unpackaged peanut (UPP) oil. However, the health risks associated with consuming aflatoxins in UPP oil remain unclear. In this study, aflatoxin contamination in 143 UPP oil samples from Guangdong Province were assessed via liquid chromatography-tandem mass spectrometry (LC-MS). We also recruited 168 human subjects, who consumed this oil, to measure their liver functions and lipid metabolism status. Aflatoxin B1 (AFB1) was detected in 79.72% of the UPP oil samples, with levels ranging from 0.02 to 174.13 µg/kg. The average daily human intake of AFB1 from UPP oil was 3.14 ng/kg·bw/day; therefore, the incidence of liver cancer, caused by intake of 1 ng/kg·bw/day AFB1, was estimated to be 5.32 cases out of every 100,000 persons per year. Meanwhile, Hepatitis B virus (HBV) infection and AFB1 exposure exerted a synergistic effect to cause liver dysfunction. In addition, the triglycerides (TG) abnormal rate was statistically significant when using AFB1 to estimate daily intake (EDI) quartile spacing grouping (p = 0.011). In conclusion, high aflatoxin exposure may exacerbate the harmful effects of HBV infection on liver function. Contamination of UPP oil with aflatoxins in Guangdong urgently requires more attention, and public health management of the consumer population is urgently required.


Asunto(s)
Aflatoxinas , Humanos , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Aceite de Cacahuete/análisis , Contaminación de Alimentos/análisis , Aflatoxina B1/toxicidad , Aflatoxina B1/análisis , China/epidemiología
14.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803636

RESUMEN

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Asunto(s)
Curcumina , Salmo salar , Animales , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Curcumina/farmacología , Curcumina/metabolismo , Alimentos Marinos/análisis , Bacterias/metabolismo
15.
Food Chem Toxicol ; 180: 114005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640280

RESUMEN

Cadmium (Cd) causes bone loss, concerning inhibiting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Prunella vulgaris L. (PV) has the potential for promoting osteogenic differentiation, but its influence on Cd-induced bone loss is unclear. This study investigated the effect of PV aqueous extract (PVE) on Cd-induced bone loss and its underlying mechanisms. Eight-week-old female SD rats were randomly assigned into four groups and treated for 16 weeks: Control, Cd (50 mg/L of Cd chloride), Cd + PV Low (125 mg/kg bw of PVE), and Cd + PV High (250 mg/kg bw of PVE). PV ameliorated femoral bone loss in Cd-treated rats manifested as increases in bone mineral density, bone volume, trabecular thickness, number, and area, and decreases in trabecular separation. Compared with Cd group, PV-treatment groups had higher serum levels of bone formation markers (ALP, BGP). Additionally, in PV-treatment groups, expressions of bone formation markers (Osterix, Runx2) and molecules involved in osteogenic differentiation signal pathway BMP/Smad (BMP4, Smad1/5/9) in the tibia of rats and isolated rat primary BMSCs were upregulated. These results suggest that PV alleviates Cd-induced bone loss by promoting osteogenic differentiation, which is likely associated with BMP/Smad pathway.

16.
Food Chem Toxicol ; 179: 113984, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567356

RESUMEN

Microplastic and nanoplastic (MNP) pollution has become a major global food safety concern. MNPs can interact with food matrices, and their passage through the gastrointestinal tract can modify their properties. To explore whether and how food matrices influence MNP toxicity, we investigated the interactions between polystyrene nanoplastics (PS-NPs) and food matrices, using an in vitro gastrointestinal digestion model. Then, we tested cell viability, particle uptake and cellular toxicities induced by PS-NPs with food matrices in Caco-2 cells. The results showed that PS-NPs were aggregated, both with and without food matrices, after in vitro gastrointestinal digestion. Glyceryl trioleate exerted greater ability to stabilize digestas and to disperse PS-NPs than starch and bovine serum albumin. The protein corona's protein composition on PS-NPs varied when it interacted with different food matrices. Moreover, when combined with food matrices, the PS-NPs' uptake was enhanced, thus aggravating cellular inflammation, stress, and apoptosis levels. Finally, through co-exposure to a mixture of food matrices, we found a combined negative effect of PS-NPs and cadmium on cellular inflammation, stress, and apoptosis levels. This is the first study to compare the impact of various food matrices on the characteristics and cellular toxicities of ingested NPs in a simulated digestive tract.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos , Células CACO-2 , Nanopartículas/toxicidad , Tracto Gastrointestinal/metabolismo , Poliestirenos/toxicidad , Inflamación/metabolismo , Contaminantes Químicos del Agua/metabolismo
17.
Environ Pollut ; 335: 122260, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506809

RESUMEN

4-Methylbenzylidene camphor (4-MBC), an emerging contaminant, is a widely-used ultraviolet (UV) filter incorporated into cosmetics because it protects the skin from UV rays and counters photo-oxidation. Despite the well-established estrogenic activity of 4-MBC, the link between this activity and its effects on neurobehavior and the liver remains unknown. Thus, we exposed zebrafish larvae to environmentally relevant concentrations of 4-MBC with 1.39, 4.17, 12.5 and 15.4 µg/mL from 3 to 5 days postfertilization. We found that 4-MBC produced an estrogenic effect by intensifying fluorescence in the transgenic zebrafish, which was counteracted by co-exposure with estrogen receptor antagonist. 4-MBC-upregulated estrogen receptor alpha (erα) mRNA, and an interaction between 4-MBC and ERα suggested ERα's involvement in the 4-MBC-induced estrogenic activity. RNA sequencing unearthed 4-MBC-triggered responses in estrogen stimulus and lipid metabolism. Additionally, 4-MBC-induced hypoactivity and behavioral phenotypes were dependent on the estrogen receptor (ER) pathway. This may have been associated with the disruption of acetylcholinesterase and acetylcholine activities. As a result, 4-MBC increased vitellogenin expression and caused lipid accumulation in the liver of zebrafish larvae. Collectively, this is the first study to report 4-MBC-caused estrogenic effects through the brain-liver-gonad axis. It provides novel insight into how 4-MBC perturbs the brain and liver development.


Asunto(s)
Estrógenos , Pez Cebra , Animales , Estrógenos/farmacología , Pez Cebra/metabolismo , Receptor alfa de Estrógeno/metabolismo , Acetilcolinesterasa/metabolismo , Protectores Solares/toxicidad , Gónadas/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Alcanfor/toxicidad , Hígado/metabolismo , Encéfalo/metabolismo
18.
Ecotoxicol Environ Saf ; 262: 115158, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37348214

RESUMEN

Birth weight is an indicator linking intrauterine environmental exposures to later-life diseases, and intrauterine metal exposure may affect birth weight in a sex-specific manner. We investigated sex-specific associations between prenatal exposure to metal mixtures and birth weight in a Chinese birth cohort. The birth weight of 1296 boys and 1098 girls were recorded, and 10 metals in maternal urine samples collected during pregnancy were measured using inductively coupled plasma mass spectrometry. Bayesian Kernel Machine Regression was used to estimate the association of individual metals or metal mixtures and birth weight for gestational age (BW for GA). The model showed a sex-specific relationship between prenatal exposure to metal mixtures and BW for GA with a significant negative association in girls and a non-significant positive association in boys. Cadmium (Cd) and nickel (Ni) were positively and negatively associated with BW for GA in girls, respectively. Moreover, increasing thallium (Tl) concentration lowered the positive association between Cd and BW for GA and enhanced the negative association between Ni and BW for GA in girls. When exposure to other metals increased, the positive association with Cd diminished, whereas the negative association with Ni or Tl increased. Our findings provide evidence supporting the complex effects of intrauterine exposure to metal mixtures on the birth weight of girls and further highlight the sex heterogeneity in fetal development influenced by intrauterine environmental factors.

19.
Adv Sci (Weinh) ; 10(19): e2205876, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37144527

RESUMEN

Exposure to micro- and nanoplastics (MNPs) is common because of their omnipresence in environment. Recent studies have revealed that MNPs may cause atherosclerosis, but the underlying mechanism remains unclear. To address this bottleneck, ApoE-/- mice are exposed to 2.5-250 mg kg-1 polystyrene nanoplastics (PS-NPs, 50 nm) by oral gavage with a high-fat diet for 19 weeks. It is found that PS-NPs in blood and aorta of mouse exacerbate the artery stiffness and promote atherosclerotic plaque formation. PS-NPs activate phagocytosis of M1-macrophage in the aorta, manifesting as upregulation of macrophage receptor with collagenous structure (MARCO). Moreover, PS-NPs disrupt lipid metabolism and increase long-chain acyl carnitines (LCACs). LCAC accumulation is attributed to the PS-NP-inhibited hepatic carnitine palmitoyltransferase 2. PS-NPs, as well as LCACs alone, aggravate lipid accumulation via upregulating MARCO in the oxidized low-density lipoprotein-activated foam cells. Finally, synergistic effects of PS-NPs and LCACs on increasing total cholesterol in foam cells are found. Overall, this study indicates that LCACs aggravate PS-NP-induced atherosclerosis by upregulating MARCO. This study offers new insight into the mechanisms underlying MNP-induced cardiovascular toxicity, and highlights the combined effects of MNPs with endogenous metabolites on the cardiovascular system, which warrant further study.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Microplásticos , Poliestirenos/toxicidad , Aterosclerosis/etiología , Aorta
20.
Toxicol Lett ; 380: 40-52, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028497

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant found in ambient and residential air, as well as ground and drinking water. Brain edema is the primary pathological consequence of 1,2-DCE overexposure. We found that microRNA (miRNA)-29b dysregulation after 1,2-DCE exposure can aggravate brain edema by suppressing aquaporin 4 (AQP4). Moreover, circular RNAs (circRNAs) can regulate the expression of downstream target genes through miRNA, and affect protein function. However, circRNAs' role in 1,2-DCE-induced brain edema via miR-29b-3p/AQP4 axis remains unclear. To address the mechanism's bottleneck, we explored the circRNA-miRNA-mRNA network underlying 1,2-DCE-driven astrocyte swelling in SVG p12 cells by circRNA sequencing, electron microscopy and isotope 3H labeling combined with the 3-O-methylglucose uptake method. The results showed that 25 and 50 mM 1,2-DCE motivated astrocyte swelling, characterized by increased water content, enlarged cell vacuoles, and mitochondrial swelling. This was accompanied by miR-29b-3p downregulation and AQP4 upregulation. We verified that AQP4 were negatively regulated by miR-29b-3p in 1,2-DCE-induced astrocyte swelling. Also, circRNA sequencing highlighted that circBCL11B was upregulated by 1,2-DCE. This was manifested as circBCL11B overexpression playing an endogenous competitive role via upregulating AQP4 by binding to miR-29b-3p, thus leading to astrocyte swelling. Conversely, circBCL11B knockdown reversed the 1,2-DCE-motivated AQP4 upregulation and alleviated the cell swelling. Finally, we demonstrated that the circBCL11B was targeted to miR-29b-3p by fluorescence in situ hybridization and dual-luciferase reporter assay. In conclusion, our findings indicate that circBCL11B acts as a competing endogenous RNA to facilitate 1,2-DCE-caused astrocyte swelling via miR-29b-3p/AQP4 axis. These observations provide new insight into the epigenetic mechanisms underlying 1,2-DCE-induced brain edema.


Asunto(s)
Edema Encefálico , MicroARNs , Humanos , ARN Circular/genética , Edema Encefálico/inducido químicamente , Edema Encefálico/genética , Edema Encefálico/patología , Astrocitos/metabolismo , Acuaporina 4/genética , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...